Preliminary Use of Convection-allowing Models in Fire Weather

Author:

Lindley T. Todd1,Zwink Alexander B.1,Barnes Ryan R.1,Murdoch Gregory P.2,Ancell Brian C.3,Burke Patrick C.4,Skinner Patrick S.5

Affiliation:

1. NOAA/National Weather Service, Norman, Oklahoma

2. NOAA/National Weather Service, Midland, Texas (Retired)

3. Texas Tech University, Lubbock, Texas

4. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

5. Cooperative Institute For Severe And High-Impact Weather Research And Operations, University Of Oklahoma, Norman, Oklahoma And NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Multiple high-impact wildfire episodes on the southern Great Plains in 2021/22 provided unique opportunities to demonstrate the emerging utility of Convection-allowing Models (CAMs) in fire-weather forecasting. This short contribution article will present preliminary analyses of the deterministic Texas Tech Real Time Weather Prediction System’s Red Flag Threat Index (RFTI) compared to wildfire activity observed via the Geostationary Operational Environmental Satellite-16 during four southern Great Plains wildfire outbreaks. Visual side-by-side comparisons of model-predicted RFTI and satellite-detected wildfires will be shown in static and animated displays that demonstrate the model’s prognostic signal in depicting fire-outbreak evolution. The data analyses are supplemented with preliminary information from state forestry agencies that provide context to predicted RFTI relative to size-based categorization of observed wildfires and human casualties. In addition, use of the National Severe Storm Laboratory’s Warn-on-Forecast System to provide short-term updates on the evolution of fire-effective atmospheric features that promote new fire ignition, problematic spread, and extreme fire behavior is also demonstrated. The examples presented here suggest that CAMs serve an important role in the mesoscale prediction of dangerous wildfire conditions. With this novel use of CAMs in fire meteorology, the authors advocate for expanded availability of fire weather-specific fields and parameters in high-resolution numerical weather prediction systems that would improve wildfire forecasts and associated impact-based decision support.

Publisher

National Weather Association

Subject

Management Science and Operations Research,Atmospheric Science,Computers in Earth Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3