Short term prediction of wind speed based on long-short term memory networks

Author:

Salman Umar,Rehman Shafiqur,Alawode Basit,Alhems Luai

Abstract

Power utilities, developers, and investors are pushing towards larger penetrations of wind and solar energy-based power generation in their existing energy mix. This study, specifically, looks towards wind power deployment in Saudi Arabia. For profitable development of wind power, accurate knowledge of wind speed both in spatial and time domains is critical. The wind speed is the most fluctuating and intermittent parameter in nature compared to all the meteorological variables. This uncertain nature of wind speed makes wind power more difficult to predict ahead of time. Wind speed is dependent on meteorological factors such as pressure, temperature, and relative humidity and can be predicted using these meteorological parameters. The forecasting of wind speed is critical for grid management, cost of energy, and quality power supply. This study proposes a short-term, multi-dimensional prediction of wind speed based on Long-Short Term Memory Networks (LSTM). Five models are developed by training the networks with measured hourly mean wind speed values from1980 to 2019 including exogenous inputs (temperature and pressure). The study found that LSTM is a powerful tool for a short-term prediction of wind speed. However, the accuracy of LSTM may be compromised with the inclusion of exogenous features in the training sets and the duration of prediction ahead.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3