Author:
Raharjo Budi,Farida Nurul,Subekti Purwo,Herlina Siburian,Doddy Heka,Rahim Robbi
Abstract
The purpose of this study was to evaluate the back-propagation model by optimizing the parameters for the prediction of broiler chicken populations by provinces in Indonesia. Parameter optimization is changing the learning rate (lr) of the backpropagation prediction model. Data sourced from the Directorate General of Animal Husbandry and Animal Health processed by the Central Statistics Agency (BPS). Data is the population of Broiler Chickens from 2017 to 2019 (34 records). The analysis process uses the help of RapidMiner software. Data is divided into 2 parts, namely training data (2017-2018) and testing data (2018-2019). The backpropagation model used is 1-2-1; 1-25-1 and 1-45-1 with a learning rate (0.1; 0.01; 0.001; 0.2; 0.02; 0.002; 0.3; 0.03; 0.003). From the three models tested, the 1-45-1 model (lr = 0.3) is the best model with Root Mean Squared Error = 0.028 in the training data. With this model, the prediction results obtained with an accuracy value of 91% and Root Mean Squared Error = 0.00555 in the testing data.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Subject
Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献