Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach

Author:

Zhong Jing,Sun JieORCID,Lai Zulong,Song Yan

Abstract

Accurate bathymetric data is crucial for marine and coastal ecosystems. A lot of studies have been carried out for nearshore bathymetry using satellite data. The approach adopted extensively in shallow water depths estimation has recently been one of empirical models. However, the linear empirical model is simple and only takes limited band information at each bathymetric point into consideration. It may be not suitable for complex environments. In this paper, a deep learning framework was proposed for nearshore bathymetry (DL-NB) from ICESat-2 LiDAR and Sentinel-2 Imagery datasets. The bathymetric points from the spaceborne ICESat-2 LiDAR were extracted instead of in situ measurements. By virtue of the two-dimensional convolutional neural network (2D CNN), DL-NB can make full use of the initial multi-spectral information of Sentinel-2 at each bathymetric point and its adjacent areas during the training. Based on the trained model, the bathymetric maps of several study areas were produced including the Appalachian Bay (AB), Virgin Islands (VI), and Cat Island (CI) of the United States. The performance of DL-NB was evaluated by empirical method, machine learning method and multilayer perceptron (MLP). The results indicate that the accuracy of the DL-NB is better than comparative methods can in nearshore bathymetry. After quantitative analysis, the RMSE of DL-NB could achieve 1.01 m, 1.80 m and 0.28 m in AB, VI and CI respectively. Given the same data conditions, the proposed method can be applied for high precise global scale and multitemporal nearshore bathymetric maps generation, which are beneficial to marine environmental change assessment and conservation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3