Generation of a flood susceptibility map of evenly weighted conditioning factors for Hungary

Author:

Sarkadi Noémi,Pirkhoffer Ervin,Lóczy Dénes,Balatonyi László,Geresdi István,Fábián Szabolcs,Varga Gábor,Balogh Richárd,Gradwohl-Valkay Alexandra,Halmai Ákos,Czigány Szabolcs

Abstract

Over the past decades, in the mountainous, hilly and/or urban areas of Hungary several high-intensity storms were followed by severe flash flooding and other hydrologic consequences. The overall aim of this paper was to upgrade the national flash flood susceptibility map of Hungary first published by Czigány et al. (2011). One elementary watershed level (FFSIws) and three settlement level flash flood susceptibility maps (FFSIs) were constructed using 13 environmental factors that influence flash flood generation. FFSI maps were verified by 2,677 documented flash flood events. In total, 5,458 watersheds were delineated. Almost exactly 10% of all delineated watersheds were included into the category of extreme susceptibility. While the number of the mean-based FFSIs demonstrated a normal quasi-Gaussian distribution with very low percentages in the quintile of low and extreme categories, the maximum-based FFSIs overemphasized the proportion of settlements of high and extreme susceptibility. These two categories combined accounted for more than 50% of all settlements. The highest accuracy at 59.02% for class 5 (highest susceptibility) was found for the majority based FFSIs. The current map has been improved compared to the former one in terms of (i) a higher number of conditional factors considered, (ii) higher resolution, (iii) being settlement-based and (iv) a higher number of events used for verification.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Atmospheric Science,Earth-Surface Processes,Tourism, Leisure and Hospitality Management,Geology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3