Extreme precipitations and their influence on the River flood Hazards: A case study of the Sana River Basin in Bosnia and Herzegovina

Author:

Sabljić Luka,Pavić DragoslavORCID,Savić StevanORCID,Bajić Davorin

Abstract

The subject of the research paper is the use of remote sensing in monitoring and analyzing the impact of climate change on the occurrence of extreme precipitation, and the cause-and-effect occurrence of floods in the area of the Sana River Basin in Bosnia and Herzegovina. The goal is to process the "product" of remote sensing to identify the time intervals of occurrence of extreme precipitation, to assess their impact on water levels, and to map potential floods in space. Spatial identification of zones that are at risk of flooding is an integral part of the aforementioned goal. Precipitation monitoring was performed by processing Climate Hazards Group InfraRed Precipitation with Station Data through the Google Earth Engine platform. The observed 30-year period (1992-2022) was compared with the average precipitation for 2017, 2018 and 2019. The impact of extreme precipitation on the water level of the Sana River was analyzed. Flooding periods have been identified: February and December 2017, March 2018 and May 2019. Mapping of flooded areas was carried out by pre-processing and post-processing of Sentinel-1 radar satellite images. The total flooded area is: 710.38 ha (February 2017), 496.79 ha (December 2017), 417.86 ha (March 2018) and 422.42 ha (May 2019). Based on the identified flooded areas, a flood risk map was created on the main course of the Sana River. The research contributes to a better understanding of the changes that occur in the area under the influence of climate change, and the data presented are important for numerous practical issues in the field of water resource management and flood protection.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Atmospheric Science,Earth-Surface Processes,Tourism, Leisure and Hospitality Management,Geology,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3