Affiliation:
1. KIRKLARELİ ÜNİVERSİTESİ
Abstract
The interaction of robots with the environment is increasing in many sectors. In particular, position and force-dependent interactions are frequently used in sensitive applications. In this interaction control, impedance control method answer the need. The parallel robot manipulator is one of the models that is widely used in this field and constitutes the basic of many robot designs. In this study, an exemplary 5-limb robot manipulator is designed. Position change according to the amount of load applied on this manipulator was realized with impedance control. Force amount measurement was applied using loadcell. The position change was calculated with the forward kinematic calculations of the manipulator. This calculation and control process was realized on the Arduino Mega embedded system board. With this experiment application study, the behaviour analysis of the robot manipulator was examined according to the stiffness and damping coefficients that affect the impedance control, and the ideal coefficients for the designed manipulator were determined.
Publisher
Muhendislik Bilimleri ve Tasarim Dergisi
Subject
Colloid and Surface Chemistry,Physical and Theoretical Chemistry