Recoil Analysis for Heavy Ion Beams

Author:

EKİNCİ Fatih1,BOSTANCI Gazi Erkan2,GÜZEL Mehmet Serdar3,DAĞLI Özlem4

Affiliation:

1. Gençlik ve Spor bakanlığı

2. ANKARA ÜNİVERSİTESİ

3. ANKARA UNIVERSITY

4. GAZI UNIVERSITY

Abstract

Given that there are 94 clinics and more than 200,000 patients treated worldwide, proton and carbon are the most used heavily charged particles in heavy-ion (HI) therapy. However, there is a recent increasing trend in using new ion beams. Each HI has a different effect on the target. As each HI moves through the tissue, they lose enormous energy in collisions, so their range is not long. Ionization accounts for the majority of this loss in energy. During this interaction of the heavily charged particles with the target, the particles do not only ionize but also lose energy with the recoil. Recoil occurs by atom-to-atom collisions. With these collisions, crystalline atoms react with different combinations and form cascades in accordance with their energies. Thus, secondary particles create ionization and recoil. In this study, recoil values of Boron(B), Carbon(C), Nitrogen(N), and Oxygen(O) beams in the water phantom were computed in the energy range of 2.0-2.5 GeV using Monte Carlo simulation and the results were compared with carbon. Our findings have shown that C beams have 35.3% more recoil range than B beams, while it has 14.5% and 118.7% less recoil range than N and O beams, respectively. The recoil peak amplitude of C beams is 68.1% more than B beams, while it is 13.1% less than N and 22.9% less than O beams. It was observed that there is a regular increase in the recoil peak amplitude for C and B ions, unlike O and N where such a regularity could not be seen. Moreover, the gaps in the crystal structure increased as the energy increases.

Publisher

Aksaray University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3