Assessing the performance of machine learning algorithms in Google Earth Engine for land use and land cover analysis: A case study of Muğla province, Türkiye

Author:

Yalçın Bayrakdar HazalORCID,Özenen Kavlak MehtapORCID,Yılmazel BurcuORCID,Çabuk AlperORCID

Abstract

Regions with high tourism density are very sensitive to human activities. Ensuring sustainability by preserving the cultural characteristics and natural structure of these regions is of critical importance in order to transfer these assets to the future world heritage. Detecting and mapping changes in land use and land cover (LULC) using innovative methods within short time intervals are of great importance for both monitoring the regional change and making administrative planning by taking necessary measures in a timely manner. In this context, this study focuses on the creation of a 4-class LULC map of Muğla province over the Google Earth Engine (GEE) platform by utilizing three different machine learning algorithms, namely, Support Vector Machines (SVM), Random Forest (RF), and Classification and Regression Tree (CART), and on comparison of their accuracy assessments. For improved classification accuracy, as well with the Sentinel-2 and Landsat-8 satellite images, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) are also derived and used in classification of the major land use classes, which are ‘built-up area & barren land’, ‘dense vegetation’, ‘water surface’, and ‘shrub, grassland & sparse vegetation’. Experimental results show that the most relevant algorithm is RF with 0.97 overall accuracy and 0.96 Kappa value, followed by SVM and CART algorithms, respectively. These results indicate that the RF classifier outperforms both SVM and CART classifiers in terms of accuracy. Moreover, based on the results of the RF classifier, 19% (2,429 km2) of the study region is classified as built-up area & barren land, 48% (6,135 km2) as dense vegetation, 2% (301 km2) as water surface and 30% (3,832 km2) as shrub, grassland & sparse vegetation class.

Publisher

Journal of Design for Resilience in Architecture & Planning

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3