Application of GA-BP in Displacement Force Inverse Analysis and Mechanical Parameter Inversion of Deep Foundation Pits

Author:

Yunhong Guo,Shihao Zhang

Abstract

Aiming at the defects of various existing displacement inverse analysis methods, using the nonlinear mapping ability of neural network and the global random search ability of genetic algorithm, this paper proposes a displacement inverse analysis method based on optimized Genetic Algorithm- Back Propagation (GA-BP) for deep foundation pit support. The method changes the method that BP algorithm relies on the guidance of gradient information to adjust the network weights, but uses the characteristics of global search of genetic algorithm to find the most suitable network connection rights and network structure, etc. to achieve the purpose of optimization. Firstly, the deformation mechanism of deep foundation pit is analyzed, its failure mode is summarized, and the calculation method of lateral rock and soil pressure is sorted out according to the code. The theory and characteristics of BP neural network and genetic algorithm are discussed, and the method of using genetic algorithm to optimize BP neural network is proposed to improve the prediction accuracy. In view of the shortcomings of GA-BP neural network prediction model in training sample pretreatment and hidden layer structure design, the optimal normalization interval was determined by correlation coefficient regression analysis, and the analytical expression of the number of neurons in hidden layer was derived by statistical principle, and the value range of the optimal number of neurons in single hidden layer was proposed. Combined with the actual engineering, the mechanical parameters inversion and displacement force inverse analysis are performed using this method, and the results show that the optimized GA-BP has higher prediction accuracy compared with BP neural network and GA-BP, and the deviation of the displacement prediction value at each depth is kept within 0.2 mm, the absolute error interval width is 0.07 mm, and the maximum relative error is 1.35% at 4.0 m depth.

Publisher

River Publishers

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3