Storage Time prediction of Frozen Meat using Artificial Neural Network modeling with Color values

Author:

Lakehal Saliha1ORCID,Lakehal Brahim2ORCID

Affiliation:

1. University of Batna1, Institute of Veterinary Science and Agricultural Sciences, Department of Veterinary Sciences. Batna, Algeria

2. University of Batna2, Institute of Hygiene and Industrial Security. Batna, Algeria

Abstract

Among the various methods available to determine the storage time of frozen meat, including analyses based on physical and chemical properties, sensory analysis, particularly color changes, is an important aspect of meat acceptability for consumers. In this study, an artificial neural network (ANN) was employed to predict the storage time of the meat based on the CIELAB color space, represented by the Lab* (L*), (a*), and (b*) values measured by a computer vision system at two–month intervals over a period of up to one year. The ANN topology was optimized based on changes in correlation coefficients (R2) and mean square errors (MSE), resulting in a network of 60 neurons in a hidden layer (R2 = 0.9762 and MSE = 0.0047). The ANN model's performance was evaluated using criteria such as mean absolute deviation (MAD), MSE, root mean square error (RMSE), R2, and mean absolute error (MAE), which were found to be 0.0344, 0.0047, 0.0687, 0.9762, and 0.0078, respectively. Overall, these results suggest that using a computer vision–based system combined with artificial intelligence could be a reliable and nondestructive technique for evaluating meat quality throughout its storage time.

Publisher

Universidad del Zulia

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3