Flow deviation and critical choking in transonic turbine cascades operating with non-ideal compressible flows

Author:

Tosto Francesco1,Giuffré Andrea1,Colonna Piero1,Pini Matteo1

Affiliation:

1. Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Nethelands

Abstract

In this work we examine the flow deviation and its relationship to critical choking, i.e., choking of the meridional component of velocity, in transonic turbine cascades operating with non-ideal compressible flows. To this purpose, a generalized expression of the corrected flow per unit area as a function of both the thermodynamic state and the molecular complexity of the working fluid, the Mach number, and the amount of swirl is derived. The trends of the corrected flow with respect to these quantities are used to infer physical insights on the flow deviation and on the operability of transonic turbine cascades in off-design conditions. Moreover, reduced-order models for the estimation of the flow deviation and the preliminary assessment of the losses have been developed and validated against the results of CFD simulations performed on a representative transonic turbine stator. Results suggest that flows of dense organic vapors exhibit larger deviations than those pertaining to compounds made of simple molecules, e.g., air. Furthermore, transonic turbines expanding dense vapors reach critical choking conditions at lower Mach numbers than the ones operating with simple molecules, and are affected by larger dissipation due to viscous mixing.

Publisher

Global Power and Propulsion Society

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering

Reference27 articles.

1. A method of performance estimation for axial flow turbines, Technical Report 2974;Ainley D.,1951

2. Design Methodology for Supersonic Radial Vanes Operating in Nonideal Flow Conditions

3. Ansys workbench, release 19.3, ANSYS, canonsburg, pa.;ANSYS,2019

4. An Investigation of Real Gas Effects in Supercritical CO2 Compressors, PhD thesis, Massachussets Institute of Technology;Baltadjiev N.,2012

5. An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3