Impact of ultrasound processing on some milk-borne microorganisms and the components of camel milk

Author:

Dhahir Namariq,Feugang Jean,Witrick Katherine,Park Seongbin,AbuGhazaleh Amer

Abstract

Inactivation of pathogenic bacteria Escherichia coli O157: H7 and Salmonella Typhimurium in camel milk was investigated using ultrasound processing (900 W, 20 kHz, 100% power level). In addition, the effect of ultrasound treatment on raw camel milk components was studied to detect changes in fatty acid profile, lipid peroxides, protein fractions, and volatile compounds. Bacterial strains (106 CFU/ml) were added to pasteurized camel milk samples (70 ml) and transferred into a sterile aluminum container (30 mm x 120 mm, 100-ml total capacity) and then subjected to continuous ultrasound processing for 15 min in an ice water bath using a 13-mm diameter probe. The standard plate count (SPC) agar method and the in vivo imaging system (IVIS) were used to evaluate the viability of bioluminescence-transformed bacteria (E. coli O157: H7 and S. Typhimurium). The continuous ultrasound processing of camel milk resulted in significant (P<0.05) reductions in S. Typhimurium and E. coli O157: H7. Relative to unsonicated raw camel milk, the cis-9, trans-11 conjugated linoleic acid (CLA) and trans-10, cis-12 CLA contents were not affected (P>0.05) by the ultrasound processing. The TBAR values, a marker of lipid peroxidation, and milk protein fractions were also similar (P>0.05) between the sonicated and unsonicated raw camel milk. A total of 24 volatile compounds (VC) were identified including 8 aldehydes, 3 ketones, 5 acids, 5 esters, 2 aromatic hydrocarbonate, and 1 sulfo compound. Of these 24 VC, eleven VC increased (P<0.05) and seven decreased (P<0.05) after sonication.  In conclusion, the results of this study showed that ultrasound processing of camel milk was efficient in inactivating subsets of milk-borne pathogens without detrimental effects on camel milk fatty acids, lipid peroxides, and protein fractions. However, there were some changes in milk VC which may affect the sensory quality of milk.

Publisher

Faculty of Food and Agriculture, United Arab Emirates University

Subject

Agronomy and Crop Science,Animal Science and Zoology,Applied Microbiology and Biotechnology,Food Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3