Author:
Duan He ,Chen Xiao-Shuang ,Sun Li-Zhong ,Zhou Xiao-Hao ,Lu Wei ,
Abstract
The electronic band structures of zinc-blende ZnTe and CdTe are calculated by using a self-consistent full-potential linearized augmented plane-wave method within the first-principle formalism. In order to clarify the electronic properties near the Brillouin-zone (BZ) center and give an effective guideline on the material design for electronic and optical devices, we link the first-principle band calculations with the effective-mass approximation. The electronic properties are analytically studied on the basis of the effective-mass Hamiltonian for zinc-blende symmetry. The effective-mass parameters, such as crystal-field splitting, spin-orbit splitting, electronic effective mass,and the hole effective mass and the corresponding Luttinger-like parameters, are determined by reproducing the calculated band structures near the BZ center. The obtained results are in good agreement with available experimental and theoretical values.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献