Abstract
Central outflow’s collimation by magnetic field is an important theoretical mechanism for explaining the astrophysical objects’ morphology formation, and its credibility has been tested in many laser plasma experiments in a dimensionless manner. This article introduces integrated simulation and experiment work based on the present laboratory magnetically collimated jet framework, to explore how non-ideal terms’ strength including radiative cooling and magnetic diffusion from different targets can affect the outflow shape. The interaction between outflow from a target with low atomic number and external field satisfies the ideal magneto-hydrodynamic conditions, and the outflow shape results in diamagnetic cavity and jet; on the other hand, a heavy element target brings strong magnetic diffusion that destroys the collimation structure, together with the stagnation of outflow introduced by radiative cooling, and outflow shape results in weakly collimated hemisphere near the target and a detached magnetized density clump. The detailed dimensionless analysis shows that the large-scale dissipation of jets in young stellar objects can possibly be an analog of the laboratory jet’s magnetic diffusion breakup, also similar structures like the loosely collimated lobes and bright ansaes in planetary nebula can be observed in highly diffusive laboratory outflows. This article shows for the first time that a series of non-relativistic astronomical outflows’ dynamic behaviors can be explained by the non-ideal magneto-hydrodynamic evolution of laboratory plasmas.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy