A compact model of shield-gate trench MOSFET based on BSIM4

Author:

Jiang Yi-Xun,Qiao Ming,Gao Wen-Ming,He Xiao-Dong,Feng Jun-Bo,Zhang Sen,Zhang Bo, ,

Abstract

Shield-gate trench MOSFET in a low-to-medium voltage range (12-250 V) plays a key role in the power conversion market due to its low power loss caused by the sheild-gate structure. In order to eliminate the faults resulting from the parasitic effects of the device and improve the conversion efficiency, the device model is indispensable in designing a circuit system. In this paper, a compact model of shield-gate trench MOSFET based on BSIM4 is proposed, including the DC model and the capacitance model. In the DC model, the basic MOSFET structure uses BSIM4, and the equivalent resistances of the basic MOSFET in series are divided into three parts. The equivalent resistance model of JFET region is established by using the electric potential difference between both ends for the first time, and the equivalent resistance model of electron diffusion region is also introduced, in order to solve the problem of current error caused by neglecting the source potential of JFET region. The equivalent resistance between drain and JFET region and the equivalent resistance of electron diffusion region both prove to be constant. In the capacitance model based on BSIM4, the model of shield-gate to drain capacitance is added to the model of drain to source capacitance, and the voltage bias between drain and gate in the model of gate to drain capacitance is modified into the potential difference between the node at the end of the gate-drift overlap region and the gate. Poisson equations are used to solve the electric potential of this node. Furthermore, the gate oxide thickness factor <i>k</i><sub>1</sub>, the shield-gate oxide thickness factor <i>k</i><sub>2</sub>, the equivalent length of gate-drift overlap <i>L</i><sub>ovequ</sub> and the equivalent length of shield-gate <i>L</i><sub>SHequ</sub> are introduced to redefine the position of gate and shield-gate, thereby simplifying the Poisson equations and ensuring the smoothness of the potential curve of the node. Comparison of the data from the simulation by using Verilog-A program with the test results from the experimental platform shows that the model simulation results fit well with the test data, Therefore, the proposed model is verified.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Wang Y, Hu H F, Yu C H, Wei J T 2015 IET Power Electronics 8 678

2. Sarkar T, Sapp S, Challa A 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, USA, March 17−21, 2013 p507

3. Park C, Havanur S, Shibib A, Terrill K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12–16, 2016 p387

4. Tong C F, Cortes I, Mawby P A, Covington J A, Morancho F 2009 IEEE Spanish Conference on Electron Devices Santiago de Compostela Santiago de Compostela, Spain, February 11–13, 2009 p250

5. Choi W, Son D, Young S 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Orlando, USA, February 5–9, 2012 p1676

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3