Self-similarity transformation and two-dimensional rogue wave construction of non-autonomous Kadomtsev-Petviashvili equation

Author:

Zhang Jie-Fang,Jin Mei-Zhen,Hu Wen-Cheng, , , ,

Abstract

<sec>Rogue wave is a kind of natural phenomenon that is fascinating, rare, and extreme. It has become a frontier of academic research. The rogue wave is considered as a spatiotemporal local rational function solution of nonlinear wave model. There are still very few (2 + 1)-dimensional nonlinear wave models which have rogue wave solutions, in comparison with soliton and Lump waves that are found in almost all (2 + 1)-dimensional nonlinear wave models and can be solved by different methods, such as inverse scattering method, Hirota bilinear method, Darboux transform method, Riemann-Hilbert method, and homoclinic test method. The structure and evolution characteristics of the obtained (2 + 1)-dimensional rogue waves are quite different from the prototypes of the (1 + 1)-dimensional nonlinear Schrödinger equation. Therefore, it is of great value to study two-dimensional rogue waves.</sec><sec>In this paper, the non-autonomous Kadomtsev-Petviashvili equation is first converted into the Kadomtsev-Petviashvili equation with the aid of a similar transformation, then two-dimensional rogue wave solutions represented by the rational functions of the non-autonomous Kadomtsev-Petviashvili equation are constructed based on the Lump solution of the first kind of Kadomtsev-Petviashvili equation, and their evolutionary characteristics are illustrated by images through appropriately selecting the variable parameters and the dynamic stability of two-dimensional single rogue waves is numerically simulated by the fast Fourier transform algorithm. The obtained two-dimensional rogue waves, which are localized in both space and time, can be viewed as a two-dimensional analogue to the Peregrine soliton and thus are a natural candidate for describing the rogue wave phenomena. The method presented here provides enlightenment for searching for rogue wave excitation of (2 + 1)-dimensional nonlinear wave models.</sec><sec>We show that two-dimensional rogue waves are localized in both space and time which arise from the zero background and then disappear into the zero background again. These rogue-wave solutions to the non-autonomous Kadomtsev-Petviashvili equation generalize the rogue waves of the nonlinear Schrödinger equation into two spatial dimensions, and they could play a role in physically understanding the rogue water waves in the ocean.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3