Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation

Author:

Zhang Jie-Fang,Yu Ding-Guo,Jin Mei-Zhen, , , ,

Abstract

The search for the excitation of two-dimensional rogue wave in a (2+1)-dimensional nonlinear evolution model is a research hotspot. In this paper, the self-similar transformation of the (2+1)-dimensional Zakharov equation is established, and this equation is transformed into the (1+1)-dimensional nonlinear Schrödinger equation. Based on the similarity transformation and the rational formal solution of the (1+1)-dimensional nonlinear Schrödinger equation, the rogue wave excitation of the (2+1)-dimensional Zakharov equation is obtained by selecting appropriate parameters. We can see that the shape and amplitude of the rogue waves can be effectively controlled. Finally, the propagation characteristics of line rogue waves are diagrammed visually. We also find that the line-type characteristics of two-dimensional rogue wave are present in the <i>x-y</i> plane when the parameter <inline-formula><tex-math id="M5">\begin{document}$ \gamma = 1 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211181_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211181_M5.png"/></alternatives></inline-formula>. The line rogue wave is converted into discrete localized rogue wave in the <i>x-y</i> plane when the parameter <inline-formula><tex-math id="M6">\begin{document}$ \gamma \ne 1 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211181_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20211181_M6.png"/></alternatives></inline-formula>. The spatial localized rogue waves with short-life can be obtained in the required <i>x-y</i> plane region. This is similar to the Peregrine soliton (PS) first discovered by Peregrine in the (1+1)-dimensional NLS equation, which is the limit case of the “Kuznetsov-Ma soliton” (KMS) or “Akhmediev breather” (AB). The proposed approach to constructing the line rogue waves of the (2+1) dimensional Zakharov equation can serve as a potential physical mechanism to excite two-dimensional rogue waves, and can be extended to other (2+1)-dimensional nonlinear systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3