Analysis of High-Order Bright–Dark Rogue Waves in (2+1)-D Variable-Coefficient Zakharov Equation via Self-Similar and Darboux Transformations

Author:

Zhang Hangwei1ORCID,Zong Jie2ORCID,Tian Geng2,Wei Guangmei2

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

2. School of Mathematical Scineces, Beihang University, Beijing 100191, China

Abstract

This paper conducts an in-depth study on the self-similar transformation, Darboux transformation, and the excitation and propagation characteristics of high-order bright–dark rogue wave solutions in the (2+1)-dimensional variable-coefficient Zakharov equation. The Zakharov equation is instrumental for studying complex nonlinear interactions in these areas, with specific implications for energy transfer processes in plasma and nonlinear wave propagation systems. By analyzing bright–dark rogue wave solutions—phenomena that are critical in understanding high-energy events in optical and fluid environments—this research elucidates the intricate dynamics of energy concentration and dissipation. Using the self-similar transformation method, we map the (2+1)-dimensional equation to a more tractable (1+1)-dimensional nonlinear Schrödinger equation form. Through the Lax pair and Darboux transformation, we successfully construct high-order solutions that reveal how variable coefficients influence rogue wave features, such as shape, amplitude, and dynamics. Numerical simulations demonstrate the evolution of these rogue waves, offering novel perspectives for predicting and mitigating extreme wave events in engineering applications.This paper crucially advances the practical understanding and manipulation of nonlinear wave phenomena in variable environments, providing significant insights for applications in optical fibers, atmospheric physics, and marine engineering.

Publisher

MDPI AG

Reference43 articles.

1. Wave propagation for the nonlinear modified Kortewege–de Vries Zakharov–Kuznetsov and extended Zakharov–Kuznetsov dynamical equations arising in nonlinear wave media;Seadawy;Opt. Quantum Electron.,2021

2. Modified Zakharov equations for plasmas with a quantum correction;Garcia;Phys. Plasmas,2005

3. Guo, B., Gan, Z., Kong, L., and Zhang, J. (2016). The Zakharov System and Its Soliton Solutions, Science Press.

4. A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations;Appl. Math. Comput.,2021

5. Solitary wave solution of Zakharov equation with quantum effect;Wang;Acta Phys. Sin.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3