Author:
Wang Jiao,Liu Shao-Hui,Chen Chang-Qing,Hao Hao-Shan,Zhai Ji-Wei, ,
Abstract
With the development of power electronic device equipment towards miniaturization and high performance, the dielectric materials with high energy storage density, high charge and discharge efficiency, easy processing and molding, and stable performance are urgently needed. At present, Barium titanate-based dielectric ceramics have a high dielectric constant, but low breakdown field strength and poor flexibility. Polymer-based dielectric materials have ultra-high functional density, ultra-fast charge and discharge response time, good flexibility, high breakdown field strength, light weight and other advantages, but low dielectric constant and low polarization strength. Their energy storage density is low, which limits the power capacitor component size and application scope. In order to obtain material with high energy storage performance, it was proposed to add high dielectric constant inorganic ceramic fillers to the polymer through a composite method to improve the energy storage performance of the material. The interface plays a vital role in the performance of the composite material. In this article, we review the latest research advance in the interface design and control of barium titanate/polyvinylidene fluoride composite dielectric materials. The effects of interface modification methods such as organic surface modification, inorganic functionalization and organic-inorganic synergistic modification on the polarization and energy storage performance of composite materials are summarized. The existing interface models and theoretical research methods are discussed, and the existing challenges and practical limitations, and the future research directions are prospected.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献