Author:
Liu Li-Tuo,Wang Chun-Long,Yu Xiao-Ya,Shi Jun-Kai,Li Yao,Chen Xiao-Mei,Zhou Wei-Hu, , ,
Abstract
Nano-scale particle stripping and inspection on silicon wafer are critical issues for Integrated Circuit(IC) manufacture industry. As more new materials are used in IC manufacture, not only particle itself but also its composition should be inspected. Particles are mainly adhered by the van der waals force. One of potential particle desorption method is laser cleaning which is environment friendly. However, the mechanism of laser cleaning is not clear and more studies should be done for laser ablation. In this paper, the kinetic process of nano particle on silicon wafer induced by nanosecond pulsed laser as well as the on-line detection method of particle composition were studied. A potential method of nano particle dynamic analysis and particle composition inspection were presented. A dual nanosecond pulse laser system both wavelengths at 532 nm is designed in which one laser pumps the particles away from wafer surface almost without damage, the other laser breakdowns the particles in air above the wafer surface to obtain the emission lines of the contaminated particles of 300 nm Cu by a spectroscopy with CCD. Particle motion trail in <i>z</i> direction was observed after laser cleaning by analyzing particle spectral features. The particle dynamic model after stripping was established in which the resistance of air collision and gravity were included. And the model parameters were obtained by calculation using experimental results. The initial velocity of particle at the end of laser pulse and the average acceleration during laser interaction were calculated which were 7.6 m/s and 7.6 × 10<sup>8</sup> m/s<sup>2</sup> respectively. The sensitivity of the dual laser system was evaluated which was between 2.1 × 10<sup>13</sup> to 5.1 × 10<sup>13</sup> atoms/cm<sup>2</sup>. As result, it is found that the gravity of the particle should not be ignored and the velocity divergence between different stripping particles is existed. The study not only provides a methodology for the study of laser-induced removal of nano particles on the wafer surface and laser induced nano particle dynamics, but also provides a potential method for the inspection of particle composition and pollution source monitoring on line in integrated circuit manufacture process. As the results were not the optimum one and further study should be done in which a better laser power density should be used.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献