Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers

Author:

Gao Shu-Han,Wang Xu-Cheng,Zhang Yuan-Tao,

Abstract

Pulse-modulated discharge is an effective way to improve the stability of radio-frequency (rf) discharges. Previous studies have shown that with the power frequency increasing to the ultra-high frequency (UHF) band, the introduction of pulse modulation in rf discharges will bring about new discharge behaviors. In this paper, the fluid model is adopted to numerically investigate the new discharge characteristics in dielectric barrier discharges (DBDs) with the rf frequency larger than 500 MHz. A very large current peak occurs in the first positive and negative half cycle during the power-on phase, respectively. The spatial structure of electric field is given to further understand the underpinning physics of the large current peaks. Furthermore, the effects of duty cycle, modulation frequency and voltage modulation rates on the large current peaks are examined based on the computational data. This numerical study will deepen the understanding of DBDs modulated by pulses in the UHF band.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3