Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis

Author:

Liu Kun,Zuo Jie,Zhou Xiong-Feng,Ran Cong-Fu,Yang Ming-Hao,Geng Wen-Qiang,

Abstract

To gain an insight into the interaction mechanism among the gaseous products of atmospheric pressure air plasma, a surface dielectric barrier discharge is used as a study object. The dynamic processes of characteristic products (nitric oxide NO and ozone O<sub>3</sub>) are measured by in-situ Fourier infrared spectroscopy and UV absorption spectroscopy. The real energy density of the plasma is calculated by Lissajous figure and ICCD optical image. The gas temperature is obtained by fitting the emission spectrum of the second positive band of the nitrogen molecule. The results show that the real energy density and gas temperature are highly positively correlated with the applied voltage and frequency. Higher applied voltages and frequencies can lead to lower peak absorbance of O<sub>3</sub> and higher absorbance of NO, and accelerate the conversion of the products from O<sub>3</sub>-containing state into O<sub>3</sub>-free state. The microscopic mechanism of the product change is revealed by analyzing the effects of the real energy density and gas temperature on the major generation and quenching chemical reactions of the characteristic products. The analysis points out that there are two major reasons for the disappearance of O<sub>3</sub>, i.e. the quenching effect of O and O/O<sub>2</sub> excited state particles on O<sub>3</sub> and the quenching effect of NO on O<sub>3</sub>. And the mechanism that the disappearance of O<sub>3</sub> accelerates with the increase of energy density and gas temperature, is as follows. The increase of real energy density means that the energy injected into the discharge region is enhanced, which intensifies the collision reaction, thereby producing more energetic electrons and reactive oxygen and nitrogen particles. Since the discharge cavity is gas-tight, the rapid generation of O leads to a rapid increase in the ratio of O to O<sub>2</sub>, which accelerates the decomposition of O<sub>3</sub>; besides, the gas temperature is raised due to the intensification of the collision reaction. Whereas the gas temperature can change the rate coefficients of the chemical reactions involving the excited state particles of nitrogen and oxygen to regulate the production and quenching of the products. The increase of gas temperature has a negative effect on O<sub>3</sub>. The higher the gas temperature, the lower the rate of O<sub>3</sub> generation reaction is but the higher the rate of dissociation, which is thought to be the endogenous cause of the rapid disappearance of O<sub>3</sub>. In contrast, the gas temperature rising can significantly elevate the reaction rate of NO production and reduces its dissociation rate. This contributes to the faster production of massive NO, resulting in an accelerated quenching process of NO to O<sub>3</sub>, which can be considered as the exogenous cause of the rapid disappearance of O<sub>3</sub>. In a word, the present study contributes to a better understanding of the physico-chemical process in atmospheric pressure low-temperature plasma.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3