Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials

Author:

Zhang Zhi-Dong ,

Abstract

This article first gives a brief review of magnetic structures, magnetic domains and topological magnetic textures and their relations. On the one hand, the magnetic domains are determined by the magnetic structures, the intrinsic magnetic properties and the micro-structural factors of a material. On the other hand, the magnetic domains could control the magnetization and demagnetization processes and also the technical magnetic properties of a material. Topology is found to have a close relation with physical properties of material. Recent interest has focused on topological magnetic textures, such as vortex, bubble, meron, skyrmion, and it has been found that the topological behaviors of these topological textures are closely related with magnetic properties of a material. Then this article introduces recent advances in magnetic structures, magnetic domains and topological magnetic textures, from views of the size effect, defects and interfaces. Finally, this article reviews briefly some results of investigation on the relations between microstructures, magnetic domains and magnetic properties of rare-earth permanent magnetic thin films, the topological magnetic textures and their dynamic behaviors of exchange coupled nanodisks. It has been concluded from the reviews on the literature that the investigation on anisotropic exchange-coupled rare-earth permanent magnets with high performance benefits the high efficient utilization of rare-earth resources. One could achieve optimal magnetic properties through magnetic domain engineering by adjusting the microstructures of magnetic materials. The concepts of topology is applied to various research fields, while the contributions from topological behaviors to physical properties are discovered in different materials. The researches on magnetic domains, topological magnetic ground state and excitation states and their dynamic behaviors are very important for a better understanding of quantum topological phase transitions and other topological relevant phenomena. It can be quite helpful for understanding the correlation between different topological states and their relationship with magnetic properties of a material, and also it will definitely contribute to the applications in various fields of magnetic materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3