Enhancement of magnetic susceptibility of Mn<sub>3</sub>Sn single crystal under GPa-level uniaxial stress

Author:

Deng Shan-Shan,Song Ping,Liu Xiao-He,Yao Sen,Zhao Qian-Yi,

Abstract

How to achieve spin control of noncollinear antiferromagnetic Mn<sub>3</sub>Sn at room temperature is a challenge. In this study, we modulate the magnetic structure of Mn<sub>3</sub>Sn single crystals by subjecting them to uniaxial stress at the GPa level using a high-pressure combined deformation method. Initially, the single crystal is sliced into regular cuboids, then embedded in a stainless steel sleeve, and finally, uniaxial stress is applied along the <inline-formula><tex-math id="M4533">\begin{document}$ \text{[11}\bar{2}\text{0]} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M4533.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M4533.png"/></alternatives></inline-formula> direction and <inline-formula><tex-math id="M4534124">\begin{document}$ \text{[01}\bar{1}\text{0]} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M4534124.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M4534124.png"/></alternatives></inline-formula> direction of the Mn<sub>3</sub>Sn single crystal. Under high stress, the single crystal undergoes plastic deformation. Our observations reveal lattice distortion in the deformed single crystal, with the lattice parameter gradually decreasing as the stress level increases. In addition, the magnetic susceptibility of Mn<sub>3</sub>Sn under GPa uniaxial stress (<i>χ</i>) is different from that under MPa uniaxial stress, and its value is no longer fixed but increases with the increase of stress. When 1.12 GPa stress is applied in the <inline-formula><tex-math id="M157485">\begin{document}$ \text{[11}\bar{2}\text{0]} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M157485.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M157485.png"/></alternatives></inline-formula> direction, <i>χ</i> reaches 0.0203 <inline-formula><tex-math id="M45346">\begin{document}$ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45346.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45346.png"/></alternatives></inline-formula>, which is 1.42 times that of the undeformed sample. In the case of stress applied along the <inline-formula><tex-math id="M45487">\begin{document}$ \text{[01}\bar{1}\text{0]} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45487.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45487.png"/></alternatives></inline-formula> direction, <i>χ</i> ≈ 0.0332 <inline-formula><tex-math id="M45.3458">\begin{document}$ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45.3458.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="12-20240287_M45.3458.png"/></alternatives></inline-formula> when the stress is 1.11 GPa. This result is also 2.66 times greater than the reported results. We further calculate the values of trimerization parameter (<i>ξ</i>), isotropic Heisenberg exchange interaction (<i>J</i>), and anisotropic energy (<i>δ</i>) of the system under different stresses. Our results show that <i>ξ</i> gradually increases, <i>J</i> gradually decreases, and <i>δ</i> gradually increases with the increase of stress. These results show that the GPa uniaxial stress introduces anisotropic strain energy into the single crystal, breaking the symmetry of the in-plane hexagon of the kagome lattice, which causes the bond length of the two equilateral triangles composed of Mn atoms to change. Thus, the exchange coupling between Mn atoms in the system is affected, the anisotropy of the system is enhanced, and the antiferromagnetic coupling of the system is enhanced. Therefore, the system <i>χ</i> is no longer a constant value and gradually increases with the increase of stress. This discovery will provide new ideas for regulating the anti-ferromagnetic spin.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3