A new noise covariance matrix estimation method of Kalman filter for satellite clock errors

Author:

Lin Xu ,Luo Zhi-Cai , , ,

Abstract

The satellite clock plays a key role in the global navigation satellite system (GNSS). The accuracy of GNSS and its applications depend on the quality of the satellite clock. Therefore, precisely estimating and predicting the satellite clock is an important issue in the fields of GNSS and its application. As an optimal estimation algorithm, Kalman filter has been used to estimate and predict the satellite clock. However, in a conventional Kalman filter algorithm, the noise covariance matrices of satellite clock need to be predetermined, which restricts its further applications since the noise covariance matrices, especially the process noise covariance matrix, are usually unknown in the real cases. With inappropriate noise covariance matrices, the state estimation of conventional Kalman filter is suboptimal. To cope with this problem, a new noise covariance matrix estimation method of Kalman filter is proposed, and then we apply it to the problem of satellite clock estimation and prediction. Considering the fact that the process noise covariance matrix depends on the unknown noise parameters, the problem of estimating process noise covariance matrix can be solved by estimating the unknown noise parameters. First, the correlation between the Kalman innovations is used to establish a linear relationship with the unknown noise parameters. Then the unknown parameters can be estimated by least-squares estimation. Finally, the satellite clock can be estimated and predicted with the estimated noise parameters. In the new method, no prior information about the noise parameters is needed. Even with some extreme prior noise parameters, the new method can also work very well and has good convergence properties. For comparison, we conduct two experiments using the new method and the adaptively robust Kalman filter with classified adaptive factors based on opening windows separately, both results are consistent with each other very well, which verifies the correctness and effectiveness of this new method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3