Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films

Author:

Pan Xiao ,Ju Huan-Xin ,Feng Xue-Fei ,Fan Qi-Tang ,Wang Chia-Hsin ,Yang Yaw-Wen ,Zhu Jun-Fa , ,

Abstract

The surface morphology and molecular orientation of -conjugated polymers, along with the chemical interaction and electronic structure at the interface between metals and these polymers, strongly affect the performance of the polymer-based organic electronic and optoelectronic devices. In this study, atomic force microscopy (AFM), synchrotron radiation photoemission spectroscopy (SRPES), and near edge X-ray absorption fine structure (NEXAFS) have been used to in situ investigate the morphology, structure, and molecular orientation of spin-coated poly(9,9-dioctylfluorene-co-benzothiodiazole) (F8BT) films and their interaction with the vapor-deposited Al metal. F8BT films were prepared by spin-coating the F8BT chloroform solution onto clean gold-coated silicon wafer surfaces. The room temperature spin-coated F8BT film is rather flat, while mild annealing treatments (120 ℃) below the glass transition temperature (Tg=130 ℃) lead to an apparent increase of surface roughness of F8BT film, which is helpful to effectively increase the contact areas between metals and F8BT. After 70 ℃ annealing in vacuum, the aromatic rings of F8BT preferentially stand more edge-on, making an average tilt angle of approximately 49 with the substrate, while the 9,9-dioctylfluorene unit (F8) and the benzothiodiazole unit (BT) nearly lie in the same plane. Upon vapor-depositing Al metal onto F8BT at room temperature, strong chemical interactions occur between Al and F8BT, as evidenced by the distinct changes of the S 2p, N 1s and C 1s spectra. Al reacts with S atoms more strongly than with N and C atoms in F8BT. In addition, obvious structural changes in valence band of F8BT are also observed during the Al deposition. Furthermore, Al dopes electrons into F8BT, leading to downward band bending, formation of interfacial dipole at the Al/F8BT interface, and partial occupation of lowest unoccupied molecular orbits (LUMO). However, no doping-induced gap states can be observed during the formation of Al/F8BT interface. Through the investigation of the core-level and valence band spectra evolution of F8BT together with the shifts of secondary electron cutoff during Al deposition, an energy level alignment diagram at the Al/F8BT interface is derived. The information gained through this study will help better understand the correlation between the interface structures of metal electrodes on semiconducting, -conjugated polymer materials and the performances of real polymer-based electronic and optoelectronic devices, which will in turn help develop the more efficient polymer-based organic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3