Effect of In–2N heavy co-doping and preferred orientation on the optical band gap and absorption spectrum of ZnO

Author:

Hou Qing-Yu ,Li Wen-Cai ,Zhao Chun-Wang ,

Abstract

Nowadays although the In–N co-doping effects on the optical band gap and absorption spectrum of ZnO are studied extensively, all of the In–N co-doped ZnO materials are of random doping, and the preferred orientation doping using the unpolarized structure of ZnO has not been considered so far. Therefore, in this paper, based on the density functional theory using first principles plane-wave ultrasoft pseudopotential (GGA+U) method, the densities of states and absorption spectra of un-doped and the In–N heavily co-doped Zn1-xInxO1-yNy (x= 0.0625-0.03125, y=0.0625-0.125) in different orientations are calculated. The results show that in the same doping mode, the larger the volume of doping system, the higher the total energy and the formation energy are and the narrower the optical band gap is; the red shifting of absorption spectrum becomes more significant with the increase of In–2N co-doping amount. Those are in good agreement with the experimental results. Under the condition of different doping manners and the same In–2N co-doped concentration, the co-coped In–N atoms along the c-axis orientation, have the narrower optical band gap and more significant red shifting of absorption spectrum than the In–N atoms with the orientation perpendicular to the c-axis. We believe that these results may be helpful for designing and preparing the new photocatalyst materials of In–N heavily co-doped ZnO.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3