Structure and formation of misfit dislocations in an epitaxial fcc film

Author:

Zhou Nai-Gen ,Zhou Lang ,Du Dan-Xu ,

Abstract

Three-dimensional molecular dynamics simulation of epitaxial growth of fcc aluminum film with a negative misfit of 0.05, under atomic deposition, has been carried out. An embedded atom method (EAM) potential is employed for computing atomic interaction in aluminum. Formation of misfit dislocation appears in the simulated growth process. Atomistic analysis of the film shows that, in the beginning the misfit dislocation consists of two Shockley partial dislocations with a stacking fault zone between them. The Burgers vectors of the two partial dislocations are of 〈211〉/6 type, and the width of the stacking fault is ~1.8 nm, which agrees well with theoretical calculation. During further deposition growth, the dislocation pair can slide, but their distance remains stable. Further analysis shows that the dislocation pair forms in a local surface disordering-ordering process, like the local melting-crystallization. Atomic scale squeezed-out tetrahedrons are found to form near the surface and soon slide back in the anor of statistical fluctuation. Under some circumstances, however, a squeezed-out tetrahedron causes disorder of its neighboring atoms, and developes into the observed local disorder zone, which later becomes the nucleation site for the formation of the Shockley dislocation pair.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3