Molecular dynamical investigation on plastic behavior of Cu(100) twist-grain boundary under uniaxial tension

Author:

Liu Xiao-Ming ,You Xiao-Chuan ,Liu Zhan-Li ,Nie Jun-Feng ,Zhuang Zhuo ,

Abstract

Misfit dislocation structures at twist-grain boundary and its effect on grain boundary strength are investigated by using molecular dynamics simulation with EAM potential. The results reveal that the density of misfit dislocations which are formed on small angle twist-grain boundary is increased as the twist angle increased. Dislocations nucleate at each unit of the dislocation networks and the yield stress is increased as the density of misfit dislocations increases since grain boundary is strengthened by the interaction between dislocation networks. Face defect is formed at large angle twist-grain boundary, and the dislocations nucleate at the atomically sharp corner of the grain boundary. The yield stress is kept almost at the same value since there is little effect on the nucleation force of dislocation on face-defect grain boundary.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3