Author:
Song Hai-Yang ,Li Yu-Longi , ,
Abstract
The effects of stacking fault (SF) and temperature on the mechanical properties of nano-polycrystal Mg under tension loading are investigated by molecular dynamics simulations. The interatomic potential of embedded atom method (EAM) is used as the Mg-Mg interaction. The computational results show that the yield strength of nano-polycrystal Mg can be obviously enhanced when stacking fault is introduced into grains, and the effect of SF on the Young's modulus of nano-polycrystal Mg is very small. The results also show that tensile twins and new grain at 300.0 K are nucleated and initiated at grain boundaries, growing continuously with the increase of strain. The dihedral angel between the (1000) plane of new grain and the X-Y plane is about 35. In other words, the nucleation and the growth of twins and new grains are the predominant deformation mechanism for nano-polycrystal Mg at 300.0K. We also find that at 10.0K the dislocation nucleation and slip are the predominant modes of the plastic deformation for nano-polycrystal Mg.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference23 articles.
1. Lu L, Chen X, Huang X, Lu K 2009 Science 323 607
2. Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511
3. Liang H Y, Wang X X, Wu H A, Wang Y 2002 Acta Phys. Sin. 51 2308 (in Chinese) [梁海弋, 王秀喜, 吴恒安, 王宇 2002 物理学报 51 2308]
4. Zhang Y G, Lu J, Zhang H W, Chen Z 2009 Scripta Mater. 60 508
5. Liu X M, You X C, Liu Z L, Nie J F, Zhuang Z 2009 Acta Phys. Sin. 58 1849 (in Chinese) [刘小明, 由小川, 柳占立, 聂君峰, 庄茁 2009 物理学报 58 1849]
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献