Author:
Di Xiao-Lian ,Xin Yu ,Ning Zhao-Yuan ,
Abstract
Based on a transformer model for inductively cowpled plasmas (ICPs), the dependence of power coupling efficiency on Q value, plasma electron density and effective electron-atom collision frequency is analyzed. The effect of coil configuration on power coupling efficiency is studied using four types of coils (one-turn, two-turn, three-turn and four-turn planar concentric coils) experimentally. The results indicate that the inductive discharge depends on coil inductance while the coupling efficiency varies with the Q value and discharge conditions such as pressure and input power. The coupling efficiency increases with the increase of pressure and input power, which is in accordance with the transformer model. However, the prediction given in the model that an increase in coil Q value improves power coupling efficiency is only applicable for coils with the same inductance. The study on power coupling efficiency for single multi-turn coil has been applied as an experimental reference for a large-area, high density inductive discharge source using four parallel multi-turn coils.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献