Simulation and validation of the effective power absorbed by a non-equilibrium plasma flow inside the medium-power inductively coupled plasma wind tunnel

Author:

Yu MinghaoORCID,Wang Bo,Liu YifanORCID,Hu Zhiqiang,Wang Zhe

Abstract

A non-equilibrium magneto-hydrodynamic model coupled with a power absorption model was established to calculate the effective power absorbed by the plasma flow inside a 110 kW medium-power inductively coupled plasma wind tunnel. This magneto-hydrodynamic model takes into account the coupling of Navier–Stokes equations, electromagnetic field equations, five species and eight chemical reactions of nitrogen, and a four-temperature model. Moreover, the power absorption model not only considers the power loss from the power supply system but also the coupling efficiency between plasma and the inductive coils. First, the anode loss of an electronic tube and its oscillator circuit efficiency is calculated, respectively, to obtain the total power loss from a radio frequency power supply system. Second, a transformer circuit model of the inductively coupled plasma (ICP) is established to calculate the coupling efficiency between the coil and plasma. Third, the effective power absorbed by the plasma flow and the pathways of the power losses of a medium-power ICP wind tunnel are obtained and discussed. Finally, the flow-field properties of the plasma flow, which are simulated by solving the Navier–Stokes equations coupled with the power absorption model, are obtained and analyzed. Furthermore, the simulated results are compared with corresponding experimental data, and they agree well with each other. It is found that the power loss of the electron tube oscillator accounts for 40%. It is the most dominant part of the total power loss. The effective power absorbed by a plasma flow is about 33.6% for the 110-kW inductively coupled plasma wind tunnel.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3