Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material

Author:

Peng Ya-Jing ,Jiang Yan-Xue , ,

Abstract

Micro-defects in an energetic material is an important factor for the formation of “hot spots” and successive explosive detonation. However, an understanding of the micro-mechanism of forming “hot spots” is limited and the development and application of energetic materials are hindered due to the less knowledge of micro-defects inside the materials. In order to understand the characteristics of micro-defects and explore the basic mechanism of forming “hot spots” caused by defects, the effects of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon (RDX) energetic materials are studied using the first-principle method, and the basic formation mechanism of initial “hot spot” is discussed. The effects of molecular vacancy defect on the RDX geometrical structure, electronic band structure, electronic density of states and frontier molecular orbitals are analyzed using the periodic model, while the influences of molecular vacancy defect on the vibration characteristics of RDX systems are calculated using the cluster model. Infrared vibration spectra and vibration characteristics of the internal molecules at the same vibration frequency for the perfect and defective RDX systems are obtained. It is found that vacancy defect makes the N–N bond near the defect long, and the molecular structure loose; some degenerate energy levels in the conduction band present separation and the electronic density of states decreases; the bottom of the conduction band and the top of the valence band contributed by N-2p and O-2p orbitals shift to the Fermi surface, which reduces the energy band gap and increases the activity of system. At the same time, the calculations of the frontier molecular orbitals and the infrared vibration spectra show that the molecular defect makes the charge distributions of highest occupied moleculer orbital concentrated mainly in the molecule near the defect, and the C–H and N–N bond energies decrease. For the defective system, some molecules around vacancy have large vibration amplitude towards the vacancy direction. This will be likely to cause hole to collapse and realize the conversion of energy. These characteristics indicate that the presence of molecular vacancy defect causes the energy band gap to decrease, the structures of the molecules near the defect become loose, the charge distribution increases and the reaction activity augments. When the defective system is loaded by external energy, the molecules near the defect are expected to be unstable. The C–H or N–N bonds in those molecules are more prone to rupture to cause chemical reaction and release of energy, which is expected to be responsible for the forming of “hot spot”. These results provide some basic micro-information about revealing the formation mechanism of “hot spots” caused by molecular vacancy defects

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Bouma R H, Duvalois W, van der Heijden A E 2013 J. Microscopy 252 263

2. LaBarbera D A, Zikry M A 2013 J. Appl. Phys. 113 243502

3. Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

4. Peng Y J, Liu Y Q, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

5. Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601 (in Chinese) [王文亭, 胡冰, 王明伟 2013 物理学报 62 060601]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3