Initial dynamic response and reaction mechanism of cyclotrimethylenetrinitramine under shock loading

Author:

Peng Ya-Jing,Sun Shuang,Liu Wei-Na,Liu Yu-Hui,

Abstract

At present, the relative safety of energetic materials exposed to extreme environments is concerned widely. Understanding the initial decomposition mechanism of energetic materials under impact loading is the basis for exploring new energetic materials with high energy and low sensitivity. In this paper, we study the initial dynamic response and reaction mechanism of perfect cyclotrimethylenetrinitramine (RDX) crystal and RDX crystal with a molecular vacancy defect under shock loading by using the multiscale shock technique (MSST) combined with reactive force field (ReaxFF) molecular dynamics method. The RDX perfect supercell and supercell containing a molecular vacancy are constructed to simulate the shock process by using the generalized gradient approximation method in density functional theory and Perdew-Burke-Ernzerhof functional. Before loading the shock wave, one NVE ensemble and Berendsen thermostat are used to control the RDX equilibrium process. A multi-scale impact compression is loaded along the crystal <i>A</i> direction. The initial temperature is 300 K and the initial pressure is set to be an atmospheric pressure. The radial distribution functions between main atoms are calculated, and the influences of shock velocity and molecular vacancy defect on shock loading process are analyzed. The evolution of N—NO<sub>2</sub> bond and C—N bond with time in RDX perfect crystals and vacancy crystals under shock velocity of 11 km/s are given. As a result, the possible initial decomposition path of perfect RDX crystal and vacancy RDX crystal are the first fracture of N—NO<sub>2</sub> bond, followed by the cleavage of C—N bond at small shock velocity. The initial reaction of the RDX crystal with a molecule vacancy is earlier than that of the perfect crystal, which indicates that the vacancy crystal is more sensitive to shock and more prone to decomposition. Furthermore, the fracture of C—H bond is possible after the initial cleavage of N—NO<sub>2</sub> bond and C—N bond, and then the H atom is transferred to oxygen atom in nitro group, forming HONO. As the shock velocity increases, the number of broken chemical bonds in the two kinds of RDX crystals increases, and the reaction becomes strong. The presence of molecular vacancy defect enhances the activity of N—NO<sub>2</sub> bond and makes it easier to break, thus accelerating the initial reaction of the vacancy crystal. The shock velocity and the particle velocity of the RDX crystal are consistent with previous experimental results and theoretical data, which shows the validity of our calculation results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3