Influence of the inclined waving wall on the surface wave evolution of liquid film

Author:

Wu Zheng-Ren ,Liu Mei ,Liu Qiu-Sheng ,Song Zhao-Xia ,Wang Si-Si , ,

Abstract

In this paper, the evolution of the fluid surface wave on an inclined waving wall is investigated. The waving wall is assumed to have a sinusoidal fluctuating surface, and the linear stability of the liquid film flow is analyzed. In addition, the evolutions of the disturbance wave under different tilt angles, and the variations in this wave when passing through different wall shapes are studied. It can be observed that the time evolution of the disturbance wave appears to be a near periodic variation of a larger wavelength. Further, by comparing its flow structure with that for the flat plate wall, it is found that the wave conditions are more complex. When the fluid flows through the waving wall, the disturbance wave no longer displays a regular change in space, and its amplitude increases with the tilt angle of the wall increasing. For the same tilt angle, the amplitude of the disturbance wave in the waving wall is greater than that for the flat plate wall, and the distortions in waveform are more obvious. As Re increases, the amplitude of the disturbance wave increases gradually, and the distortion of the corresponding wave increases as well. Further, with the increase of wall surface amplitude, the amplitudes of the static and disturbance waves increase, whereas the corresponding traveling-wave period remains unchanged. Finally, the influence of the wall tilt angle on flow stability is analyzed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3