Effect of periodic grooving topography on dynamics of Insoluble surfactant-laden thin film flow

Author:

Li Chun-Xi ,Chen Peng-Qiang ,Ye Xue-Min ,

Abstract

Targeting the flowing of insoluble surfactant-laden film over topography substrate, the lubrication theory is adopted to derive the evolution equations of thin liquid film thickness and interfacial surfactant concentration. The flowing characteristics of the film on topography surfaces, and the influence of topography structure are examined based on the numerical simulation with PDECOL code. The results show that when the thin film of insoluble surfactant flows over periodic grooving topography, the depression appears at the negative step, while the ridge is shaped at the positive step, both of which increase gradually with time going by. Compared with the case of the flat base, the surfactant-laden film spreading speed is enhanced. Increasing the groove depth or reducing the groove steepness leads to the increase of the rupture possibility of the film. Improving the groove width promotes the film flowing. The decrease of the steepness can cause the film to form a ridge feature before entering into the first groove. Gravity has the opposite effects on the up-hilling and down-hilling processes of liquid film flow, which causes the flow stability to deteriorate. Conjoining pressure induced by intermolecular forces can accelerate the film, giving rise to a notable dewetting phenomenon, while disjoining pressure has an adverse effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Pang H Y, Zhang X F, Zhang H Y, Du F P 2006 Chin. J. Pestic. Sci. 8 157 (in Chinese) [庞红宇, 张现峰, 张红艳, 杜凤沛 2006 农药学学报 8 157]

2. Lee K S, Ivanova N, Starov V M Hilal N, Dutschk V 2008 Adv. Colloid Interfac. 244 54

3. Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

4. Matar O K 2002 Phys. Fluids 14 4216

5. Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3