Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation

Author:

Xiao De-Long ,Sun Shun-Kai ,Xue Chuang ,Zhang Yang ,Ding Ning ,

Abstract

Dynamic hohlraum is a possible selection to drive inertial confinement fusion. Currently, the ~8 MA PTS facility in China has been completed, which provides a powerful experimental platform of relatively large drive current for researches of dynamic hohlraums and dynamic hohlraum driven inertial fusion. To understand the formation processes and the main characteristics of the dynamic hohlraum, and explore the most important issues affecting the optimization of hohlraum radiation, is not only fundamental in the research of dynamic hohlraums, especially for the experimental design, but also can provide a physical insight for the experimental diagnosis. In this paper the implosion dynamics of a tungsten wire-array Z-pinch embedded with a CH foam converter, especially the impaction interaction of the wire-array plasma with the converter plasma, is numerically investigated using a one-dimensional non-equilibrium radiation magnetohydrodynamic code. In simulations the tungsten plasma is assumed as a plasma shell with a width of 1 mm, and the CH converter plasma is assumed to be uniform with an initial temperature of 0.1 eV. The overall implosion is driven by an assumed current with a peak value of 8 MA and a rise time of 66.4 ns. It is shown that a local high pressure region, which is generated by the impaction of the tungsten plasma with the converter plasma, is crucial to launch the strongly radiating shock wave and to form the dynamic hohlraum. Due to the supersonic radiation transfer in the low opacity CH converter plasma, which is also produced in the high pressure region, there exists a hohlraum region inside the front of the shock wave, in which the radiation is high. At the same time, the plasma pressure is uniform in this hohlraum region, so the plasma will not be disturbed before the shock arrives. As the shock propagates to the axis, the hohlraum becomes small and the radiation temperature is also increased. Basically, the hohlraum radiation is determined by the detailed profiles of plasma conditions when the wire-array plasma impacts onto the CH converter plasma. And these profiles are determined by many factors, such as the drive current, initial masses and radii of the wire-array and the converter, as well as the material of the converter. When the drive current is fixed, the optimal wire-array can be determined. Firstly, the mass ratio of the wire-array to the CH converter is varied. Numerical calculations show that as this ratio is decreased, the shock velocity is increased and the radiation temperature is increased as well. Additionally, the time duration of the radiation pulse before the shock arrives at the axis is remarkably increased. It is also found that when this mass ratio is slightly lower than unity, for example 0.75, a relative optimal dynamic hohlraum can be produced. Secondly, if the mass ratio is fixed and the initial radius of the converter is decreased, it is found that the shock velocity is just slightly changed. However, the peak hohlraum radiation temperature is increased and the radiation pulse becomes remarkably narrow. A suitable radius ratio of the wire-array to the converter, neither too large to induce strong Magneto-Rayleigh-Taylor (MRT) instability nor too small to gain a small kinetic energy of the wire-array before impacting onto the converter surface, should be selected. In the future we will develop two-dimensional code to investigate the effect of MRT instability on the formation of dynamic hohlraums.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3