Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability

Author:

Yuan Yong-Teng,Tu Shao-Yong,Yin Chuan-Sheng,Li Ji-Wei,Dai Zhen-Sheng,Yang Zheng-Hua,Hou Li-Fei,Zhan Xia-Yu,Yan Ji,Dong Yun-Song,Pu Yu-Dong,Zou Shi-Yang,Yang Jia-Min,Miao Wen-Yong, ,

Abstract

<sec>Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. Radiative shocks occur commonly in nature, especially in astronomical systems and inertial confinement fusion. The study of the effects of radiation on Richtmyer-Meshkov (RM) instability will improve our ability to understand and predict the evolution of RM instability under high energy density conditions.</sec><sec>A few experiments have been performed to compare the radiative case with the non-radiative case in Rayleigh-Taylor (RT) instability, thereby studying how the radiative effects change the evolution of RT instability, but the interplay between RM instability and radiative shock has been studied rarely. </sec><sec>This paper reports mainly the role of radiation in the changing of the RM instability. Two experiments are performed at Shenguang III prototype laser facility, the RM instability growth data are obtained by varying the laser intensity. The laser intensity for high-drive experiment is approximately 60% greater than that for low-drive experiment. The target consists of a multiple layer in the axial direction, in which the first layer is a 15μm-thick CH sample serving as an ablator, followed by a 10 μm-thick aluminum used as a shield layer to prevent the preheat effect. The next layer is a 350-μm-thick SiO<sub>2</sub> foam, which is used as a material to produce a radiative shock. The last layer is the CH perturbed sample. There is a sinusoidal perturbation on the surface of CH sample which is adjacent to the SiO<sub>2</sub> foam. The target is irradiated by four overlapping laser beams, and the laser beams produce a large pressure that drives a shock wave, whose velocity can be changed by varying the laser intensity, into the target package.</sec><sec>In the experiments, shock-generated radiative fluxes first ablate the unstable interface which the shock has not passed through, then the shock transmits the unstable interface to produce the RM instability. The images of unstable interface are captured using side-on x-ray radiography, and the experimental results show that the RM growth is suppressed in the experiment for the higher laser intensity. Radiation hydrodynamic code Multi1D is used to evaluate the electron temperature, shock velocity, and electron density. The simulations show that the foam temperature in the high-drive case can reach 80 eV in the front of shock, this energy flows away from the shock front, generating a radiative precursor ahead of the shock. The radiative precursor velocity of 270 km/s is much larger than the shock velocity of 170 km/s, the radiative precursor arrives at the unstable interface before the shock and ablates the unstable interface, so the radiative flux changes the initial conditions of unstable interface. When the shock propagates through the unstable interface, the ablation increases the density gradient length scale and reduces the Atwood number of the unstable interface, so the RM growth is suppressed in the high-drive case because of the ablation of the radiative precursor.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3