Quantitative research into the influence of slider-disk contact force on the information intensity of the magnetic recording layer

Author:

Liu Yu-Liang ,Chen Zhi-Gang ,Sun Da-Xing ,Zhang Guang-Yu ,

Abstract

In order to achieve the requirement of rapid growth of the magnetic storage density, the slider-disk spacing needs to be reduced to less than 2 nm. However, the slider-disk contact can easily occur within such a narrow spacing, and eventually result in the loss of the stored data in the magnetic recording film, i.e., demagnetization of the magnetic disk. Therefore, research into the magnetomechanical relationship related to the slider-disk contact demagnetization is significantly important to identify the demagnetization mechanism and further improve the anti-demagnetization performance of the magnetic disk. In this study, the nanoscratch experiment and the magnetic force microscope technology are used to investigate the magnetomechanical behavior induced by the slider-disk contact. And according to the phase imaging principle of the magnetic force microscope, the relationship between the information intensity of the magnetic recording layer and the magnetic contrast measured by the magnetic force microscope is found. Thus, a quantitative analysis method is proposed, which is different from the previous qualitative observation of the magnetic domain change. Experimental results show that the critical demagnetization load during the slider-disk contact is 120 up N. When the slider-disk contact force exceeds the critical demagnetization load, the increase of slider-disk contact force can lead to the decrease of the information intensity of the magnetic recording layer. And the decay rate of the information intensity will be rapidly enhanced after the slider-disk contact force reaches 380 up N. Moreover, the variation trend of the information intensity with the depth of the residual scratch is the same as that of the information intensity with the slider-disk contact force. Specially, before the slider penetrates the hard carbon layer of the magnetic disk, the slider-disk contact demagnetization still may occur, corresponding to the load cases from 120 up N to 200 up N. In addition, for any slider-disk contact force, the area of the surface damage of the hard carbon layer is always greater than that of the demagnetization of the magnetic recording layer. This phenomenon is related to the elasto-plastic force fields in the hard carbon layer and the magnetic recording layer. Moreover, when the slider repeatedly scratches the same location on the surface of the magnetic disk, the information intensity of the magnetic recording layer will decrease with the increase of scratching number. After the scratching number is beyond 20, the elastic shakedown status may occur in the magnetic recording layer, and correspondingly, the information intensity of the magnetic recording layer can be close to a constant value. This result is derived from the work hardening process during the slider-disk repeatedly scratching.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3