Author:
Pan Deng ,Yan Hui ,Jiang Hong-Yuan ,
Abstract
The increasing of areal density of hard disk drives promotes the decreasing of the slider flying height. Lubricant transfer between slider and disk, caused by reducing slider flying height, plays an important role in affecting slider flying stability. In this study, the improved coarse-grained, bead-spring model is used to investigate the mechanism of lubricant transfer between slider and disk by molecular dynamics simulation. The effects of lubricant thickness on disk surface, lubricant type, and local temperature difference on the slider surface on lubricant transfer are studied. We observe that the amount of lubricant transferred to the slider sharply increases with the increase of lubricant thickness value on the disk surface. Increasing the number of hydroxyl groups in an individual lubricant molecule can greatly reduce the volume of the lubricant transferred to the slider. In addition, the local temperature difference on the slider surface can increase the volume of lubricant transferred to slider. What is more, the increasing of the number of hydroxyl groups contained in an individual molecule can considerably improve the influence of the local temperature difference on the lubricant transfer between slider and disk.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献