Lubricant transfer mechanism and process between slider and disk

Author:

Pan Deng ,Yan Hui ,Jiang Hong-Yuan ,

Abstract

The increasing of areal density of hard disk drives promotes the decreasing of the slider flying height. Lubricant transfer between slider and disk, caused by reducing slider flying height, plays an important role in affecting slider flying stability. In this study, the improved coarse-grained, bead-spring model is used to investigate the mechanism of lubricant transfer between slider and disk by molecular dynamics simulation. The effects of lubricant thickness on disk surface, lubricant type, and local temperature difference on the slider surface on lubricant transfer are studied. We observe that the amount of lubricant transferred to the slider sharply increases with the increase of lubricant thickness value on the disk surface. Increasing the number of hydroxyl groups in an individual lubricant molecule can greatly reduce the volume of the lubricant transferred to the slider. In addition, the local temperature difference on the slider surface can increase the volume of lubricant transferred to slider. What is more, the increasing of the number of hydroxyl groups contained in an individual molecule can considerably improve the influence of the local temperature difference on the lubricant transfer between slider and disk.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3