Effects of doping F and transition metal on crystal structure and properties of ZnO thin film

Author:

Zhou Pan-Fan ,Yuan Huan ,Xu Xiao-Nan ,Lu Yi-Hong ,Xu Ming ,

Abstract

Transition metal (TM=Cu, Ni, Mn, Fe and Co)-doped ZnO:F thin films are deposited on glass substrates by a sol-gel method through using ethanol as solvent. All the samples are checked by using X-ray diffraction (XRD), atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), photoluminescence, UV spectrophotometer, and vibrating sample magnetometer. The XRD reveals that Cu, Ni, Mn, Fe and Co occupy the Zn sites successfully without changing the wurtzite structure of ZnO at moderate doping concentration, and no evidence of any secondary phases is found. The AFM measurements show that the average values of crystallite surface roughness of the samples are in a range from about 2 to 12.7 nm. The surface of ZnO:F thin film becomes less compact and uniform when ZnO:F thin film is doped with TM ions. The TM ions are indeed substituted at the Zn2+ site into the ZnO lattice as shown in the results obtained by XPS and XRD. Further studies show that most of the ZnO films exhibit preferred (002) orientations, while the best c-axis orientation occurs in Zn0.93Co0.05F0.02O film. However, the crystalline quality and preferential orientation of ZnO film become poor in Zn0.93Mn0.05F0.02O. The optical bandgaps of all the ZnO:F films decrease after doping TM. All the samples show high transmittance values in the visible region. Strong ultraviolet emission and weak blue emission are observed in the photoluminescence spectra measured at room temperature for all the samples. The Zn0.93Mn0.05F0.02O film shows the weakest ultraviolet emission peak and strongest blue emission peak, corresponding to the strongest ferromagnetism; while for the Zn0.96Cu0.02F0.02O film, the strongest ultraviolet emission peak and weakest blue emission peak are observed, accompanied by the weakest ferromagnetism. To determine the optical bandgap (Eg) of TM-doped ZnO:F thin film, we plot the curve of (α hv)2 versus photon energy (hv). It is found that the Eg decreases from 3.16 eV to 3.01 eV with the TM ions doping. We show the variations of saturation magnetization with the Vm O concentration for TM-doped ZnO:F thin films with the different transition metal ions. In the case of Cu-doped ZnO:F thin films, the ZnO sample shows that a weaker magnetism. ZnMnFO film exhibits well-defined hysteresis with a coercive field of 7.28×10-5 emu/g. Further studies reveal that these interesting magnetic properties are correlated with the defect-related model for ferromagnetism. Our results will expand the applications of ZnO:F thin films in visible light emitting diode, photovoltaic devices, photoelectrochromic devices, etc. Meanwhile, extreme cares should be taken to control the codoping of ZnO:F thin films for tuning the magnetization.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3