Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device

Author:

Jiang Ran ,Du Xiang-Hao ,Han Zu-Yin ,Sun Wei-Deng ,

Abstract

The origin of the resistance switching behavior in HfO2 is explained in terms of filament formation/rupture under an applied voltage. In order to investigate the position and process of conductive filament in resistive switching memory, the resistive switching and chemical structure of Ti/HfO2/Pt memory device are studied. Through current-voltage measurement, typical resistive switching behavior is observed in Ti/HfO2/Pt device cells; through detecting Hf 4f with different depths by using X-ray photoelectron spectroscopy. It is observed that the Hf4+ decreases monotonically with depth increasing towards HfO2/Pt interface in low resistance state, while a fluctuation distribution of Hf4+ is shown in high resistance state and in the pristine Ti/HfO2/Pt device. The concentration of Hf4+ in high resistance state is higher than that in low resistance state, which is confirmed by measuring the electron energy loss spectrum. Additionally, the O 1s spectrum shows a similar result consistent with the Hf 4f one. The above result is explained by the existence of locally accumulated oxygen vacancies in the oxide bulk layer in high resistance state and pristine states. It is proposed that the oxygen vacancy clusters dominantly determine the resistivity by the connecting/rupture between the neighbor cluster sites in the bulk. The cluster defects are the preexisting structural distortion/injure by charge trapping defects due to the fixed charge which could confine the nucleation of oxygen vacancies and bigger distortion could be enhanced or recovered via the transportation of oxygen vacancies under the external voltage. Oxygen vacancies are driven away from the clusters under SET electrical stimulus, and then recover back to original cluster sites under RESET process.#br#The previous presumption of the ideal evenly-distributed state for oxygen vacancies in the bulk of resistance random access memories (RRAMs) device leads to an issue about where the filaments occur/form first since the oxygen vacancy defects show uniform distribution in the active oxide bulk layer. Since the conductive filament is easily formed in the cluster region of oxygen vacancies, this study could provide a deep understanding of the formation of conductive filament in RRAMs device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3