Influence of toroidal rotation on plasma response to external RMP fields in tokamak

Author:

Li Chun-Yu,Hao Guang-Zhou,Liu Yue-Qiang,Wang Lian,Liu Yi-Hui-Zi, , ,

Abstract

The type-I edge localized mode (ELM) is a critical event associated with magneto-hydrodynamic(MHD) instabilities occurring in tokamak high-confinement (H-mode) discharges, that leads to huge heat loads on the plasma phasing components (PFC) and may result in material damages. It is important to effectively control large ELMs, in order to ensure safe operation of the future reactor-scale devices such as ITER and DEMO. Resonant magnetic perturbation (RMP) has been experimentally demonstrated to be a mature and robust technique for controlling ELMs. A set of parameters, such as the edge safety factor, the plasma flow, the RMP coil geometry and the spectrum of the applied external field, have been found to play important roles in controlling ELMs by RMP. Furthermore, the plasma pressure is known to affect the plasma response to the RMP field, in particular near the no-wall beta limit. This is because high plasma pressure drives the resonant field amplification of the external field by the plasma response. The ITER 10 MA steady state scenario will be operated near the no-wall stability limit. The new tokamak device HL-2M will also operate in the relatively high-beta regimes. On the other hand, more investigations are still needed to understand the influence of toroidal flow on the high-beta plasma response. This work employs a single fluid toroidal model to compute the plasma RMP response in HL-2M, emphasizing on the roles of two key physical quantities: the plasma resistivity and the toroidal rotation. The former allows penetration of the external RMP field into the plasma, while the latter mainly provides screening effect on the resonant field component. More specifically, the MARS-F code is utilized to study the plasma response to the externally applied <i>n</i> =1 ( n is the toroidal mode number) RMP field for high-beta HL-2M discharges, while varying the plasma toroidal rotation profile. The plasma response is found to (i) substantially modify the poloidal spectrum of the applied vacuum RMP field, (ii) change the amplitude of the resonant radial field amplitude near the plasma edge, and (iii) affect optimal current phasing between the two rows of RMP coils on HL-2M. A sufficiently slow toroidal flow near the plasma edge amplifies the radial field at rational surfaces associated with the perturbation. Since the latter serves as a reliable indicator for controlling the type-I edge localized mode (Type-I ELM) by RMP, varying rotation profile near the plasma edge offers a promising approach to optimize ELM control.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3