Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation

Author:

Zhou Li-Na,Hu Han-Qing,Liu Yue-Qiang,Duan Ping,Chen Long,Zhang Han-Yu, ,

Abstract

As is well known, large-scale type-I edge localized modes (ELMs) may pose serious risks to machine components in future large fusion devices. The resonant magnetic perturbation (RMP), generated by magnetic coils external to the plasma, can either suppress or mitigate ELMs, as has been shown in recent experiments on several present-day fusion devices. Understanding the ELM control with RMP may involve various physics. This work focuses on the understanding of the roles played by three key physical quantities: the edge safety factor, the RMP coil current, and the particle drift kinetic effects resulting from thermal and fusion-born α-particles. Full toroidal computations are performed by using the MARS-F/K codes. The results show that the plasma response based figures-of-merit i.e. the pitch resonant radial field component near the plasma edge and the plasma displacement near the X-point of the separatrix,consistently yield the same periodic amplification as <inline-formula><tex-math id="M11">\begin{document}$ q_{95} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M11.png"/></alternatives></inline-formula> varies. The number of peaks, <i>y,</i> is positively correlated with the toroidal number <i>n</i>, i.e. <inline-formula><tex-math id="M12">\begin{document}$y \approx n\Delta {q_{95}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M12.png"/></alternatives></inline-formula> with <inline-formula><tex-math id="M13">\begin{document}$\Delta {q_{95}} = 3.5$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M13.png"/></alternatives></inline-formula>. The peak window in <inline-formula><tex-math id="M14">\begin{document}$ q_{95} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M14.png"/></alternatives></inline-formula> occurs when a new resonant surface passes through a specific region of the plasma edge. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield a linear relationship between the optimal/worst current phase difference and <inline-formula><tex-math id="M15">\begin{document}$ q_{95} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M15.png"/></alternatives></inline-formula>, which can be well fitted by a simple analytic model. The optimal value of coil current amplitude is sensitive to <i>n</i>. Compared with the same current amplitude assumed for the two/three rows of coils, the optimal current amplitude can increase the <inline-formula><tex-math id="M16">\begin{document}${\xi _{\text{X}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M16.png"/></alternatives></inline-formula> but does not change the prediction of the relative toroidal phase difference. More advanced response model, including kinetic resonances between the RMP perturbation and drift motions of thermal particles and fusion-born alphas, shows that the modification of kinetic effects should be considered in order to better describe the plasma response to RMP fields in high-<i>β</i> plasmas. The fluid response model with a strong parallel sound wave damping (<inline-formula><tex-math id="M17">\begin{document}${\kappa _\parallel } = 1.5$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20222196_M17.png"/></alternatives></inline-formula>) can well predict the plasma response for the ‘DEMO-like’ equilibria. For low β plasma, the kinetic response is consistent with the fluid response, whether a strong parallel sound wave damping exists or not.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3