Author:
Li Ke,Dong Ming-Li,Yuan Pei,Lu Li-Dan,Sun Guang-Kai,Zhu Lian-Qing, , ,
Abstract
The photonic integrated interrogation technology based on array waveguide grating is a hot but difficult research area in the silicon optical field. Compared with traditional interrogation methods, the photonic integration interrogation technology based on an array waveguide grating has obvious advantages in high-speed and high-precision demodulation of fiber Bragg gratings due to its high demodulation accuracy, fast demodulation speed, and small package size. In recent years, with the development of photonic integration technology, various research institutions and relevant organizations have conducted extensive and in-depth research and optimization on the photonic integration interrogation method of array waveguide gratings. In this paper we introduce the working principle of array waveguide grating and the principle of fiber Bragg grating wavelength interrogation based on array waveguide grating, the important progress of fiber Bragg grating interrogator based on array waveguide grating in both material system and system performance, and summarize the typical applications in interrogator based on array waveguide grating. The future development of fiber Bragg grating demodulation system is proposed from three aspects: new materials, system integration, and scale-up, which provides a reference for the research and development of photonic integrated interrogation technology based on array waveguide grating.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献