Influence of top mirror on performance of GaN-based resonant cavity light-emitting diode

Author:

Zhao Shu-Yu,Xu Bin-Bin,Zhao Zhen-Yu,Lü Xue-Qin,

Abstract

In this paper, two kinds of distributed Bragg reflectors (DBRs) with high-reflective-film structure and filter structure are designed and evaporated on the top of GaN-based resonant cavity light emitting diode (RCLED), respectively. Firstly, the reflectivity spectra of the two kinds of DBRs are simulated. Then, the differences in performance including optical longitudinal modes, spectral linewidth, and output light intensity between the two kinds of RCLED devices with different top mirrors, are compared and analyzed. Finally, the influence of the top mirror reflection characteristics on the output spectrum of the RCLED is studied in detail. The results show that the top mirror is an important part of RCLED, and its reflection characteristics determine the optical performance of the device. For the conventional DBR with high-reflective-film structure, its reflectivity spectrum has a wide high-reflection band. Accordingly, the spectral linewidth of the RCLED can be effectively narrowed by using the conventional DBR as the top mirror. However, the spectrum still consists of multi-longitudinal modes. For the DBR with filter structure, its reflectivity spectrum has a narrow high-transmittance band at the central wavelength. Depending on the modulation effect of the high-transmittance band to the output light, single longitudinal mode light emission is realized for the RCLED with the specially designed DBR as the top mirror, which shows a broad application prospect in optical communication and optical fiber sensing. Moreover, the spectral characteristics of the RCLED can be further optimized to meet its application requirements in much more fields, by designing the top mirror structure and changing its reflectivity spectrum characteristics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3