Simulation of hollow cathode discharge in oxygen
-
Published:2022
Issue:2
Volume:71
Page:025201
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Zhao Li-Fen,Ha Jing,Wang Fei-Fan,Li Qing,He Shou-Jie, , ,
Abstract
The characteristics, the formations and loss mechanisms of different particles of hollow cathode discharge in oxygen at 266 Pa are investigated by using the fluid model. The model contains 11 kinds of particles and 48 reactions. Under this simulation condition, the negative glow regions corresponding to the surrounding cathodes overlap. The results show that there is a strong hollow cathode effect. The density distributions of different charged and active particles are calculated. The charged particle density is located mainly in the central region of the discharge cell. Electrons and O<sup>–</sup> are the main ingredients of negative charges in the discharge system, and their density peaks are 5.0 × 10<sup>11</sup> cm<sup>–3</sup> and 1.6 × 10<sup>11</sup> cm<sup>–3</sup>, respectively and <inline-formula><tex-math id="Z-20220109205735">\begin{document}${\rm{O}}_2^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205735.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205735.png"/></alternatives></inline-formula> is a main composition of positive charge in the discharge system with a peak density of 6.5 × 10<sup>11</sup> cm<sup>–3</sup>. Abundant active oxygen particles exist in the discharge system, and their density is much higher than those of other charged particles. According to the densities of active particles, their magnitudes are ranked in the small-to-large order as O, O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>), O(<sup>1</sup>D) and O<sub>3</sub>. Furthermore, the generation and consumption mechanism of electrons, O<sup>–</sup> and <inline-formula><tex-math id="Z-20220109205753">\begin{document}${\rm{O}}_2^+ $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205753.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20211150_Z-20220109205753.png"/></alternatives></inline-formula> are calculated in detail, and the generation and consumption paths of different active oxygen particles are also given. The results show that there is a complex coupling process among these particles. Each reaction generates a certain number of particles and consumes other particles at the same time, resulting in a dynamic balance among these particles.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference47 articles.
1. Nakagawa Y, Kawakita T, Uchida S, Tochikubo F 2020 J. Phys. D: Appl. Phys. 53 135201 2. Babu S K, Kelly S, Kechkar S, Swift P, Daniels S, Turner M M 2019 Plasma Sources Sci. Technol. 28 115008 3. Vagin N P, Ionin A A, Kochetov I V, Napartovich A P, Sinitsyn D V, Yuryshev N N 2017 Plasma Phys. Rep. 43 330 4. Chen W, Huang J, Li H, Lv G H, Wang X Q, Zhang G Q, Wang P Y, Yang S Z 2012 Acta Phys. Sin. 61 185203 陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国权, 王鹏业, 杨思泽 2012 物理学报 61 185203 5. Ouyang J T, Zhang C Y, Zhang Y, Liu S H, Miao J S 2020 J. B. Inst. Techno. 40 908 欧阳吉庭, 张晨阳, 张宇, 刘思含, 缪劲松 2020 北京理工大学学报 40 908
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|