Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate

Author:

Liu Cheng,Li Ming,Wen Zhang,Gu Zhao-Yuan,Yang Ming-Chao,Liu Wei-Hua,Han Chuan-Yu,Zhang Yong,Geng Li,Hao Yue, , ,

Abstract

Quasi-vertical GaN barrier Schottky diodes have attracted much attention due to their low cost and high current transfer capability. The main problem is that the reverse characteristics of the devices may not be well estimated, which affects the design of the diodes. In this paper, the defects of GaN materials and the leakage related tunneling mechanisms accompanied with other mechanisms are considered. Based on the established composite device models, the reverse leakage current is simulated which is well consistent with the recent experimental result. With the assistance of the proposed models, several field plate structures are discussed and simulated to obtain a quasi-vertical GaN barrier Schottky diode with high breakdown voltage. The major leakage mechanisms are also analyzed according to the relation among leakage current, temperature and electric field at various reverse voltages. High BFOM up to 73.81 MW/cm<sup>2</sup> is achieved by adopting the proposed stepped field plate structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-vertical GaN SBD device structure and parameter optimization;2022 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS);2023-02-07

2. Dislocation reduction mechanism os GaN films on vicinal sapphire substrates;Acta Physica Sinica;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3