Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel

Author:

Zhao Hao,Feng Jin-Xia,Sun Jing-Ke,Li Yuan-Ji,Zhang Kuan-Shou, ,

Abstract

Einstein-Podolsky-Rosen (EPR)-entangled state light field at a telecommunication wavelength of 1.5 μm is an important quantum source for realizing the continuous variable quantum information processing and some quantum protocols over optical fiber channel. When the EPR-entangled state light field is distributed over the optical fiber channel, the disentanglement is always present because the the EPR entangled state interacts with the fiber channel. It affects the performance of quantum information processing. In this paper, we theoretically calculate the positive partial transposition (PPT) of the entangled state distributed over the optical fiber channel in the single-channel and dual-channel distribution scheme, respectively. Three types of initial entangled light field are considered and analyzed, they being an initial EPR entangled state, an EPR entangled state with asymmetric quadratures, and an EPR entangled state with asymmetric modes. Furthermore, the influence of the extra noise in the optical fiber on the transmission distance of EPR entangled state over the optical fiber channel is investigated. In the single-channel scheme or dual-channel scheme, the extra noise in the optical fiber channel leads the entangled state light field to be disentangled, and the transmission distance of EPR entangled state over the optical fiber channel to decrease rapidly with the increase of the extra noise. For maintaining the robustness of EPR entangled states in lossy optical fiber channels, the dual-channel scheme has more stringent requirements for the correlation quadrature symmetry and purity of the initial entangled state than the single-channel scheme. In the single fiber noise channel scheme, the maximum transmission distance and the robustness of the EPR entangled states with asymmetric modes are not sensitive to the asymmetry between modes. The change of asymmetry between modes does not lead to being disentangled. The maximum transmission distance does not change either. However, the decrease of asymmetry between modes results in the disentanglement in the double fiber noise channels’ scheme. The maximum transmission distance is reduced and the sudden death occurs to the entanglement. The present results will lay a foundation for continuous variables quantum information processing based on optical fiber, such as realizing continuous variables quantum communication over optical fiber and constructing metropolitan quantum network over optical fiber.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3